
White Paper

Understanding the
OWASP API Top Ten
for 2023 (and How to
Protect Your APIs)

Table of Contents
OWASP API 2023 – Risk 1: Broken Object-level Authorization................................3

OWASP API 2023 – Risk 2: Broken Authentication..4

OWASP API 2023 – Risk 3: Broken Object Property Level Authorization.............5

OWASP API 2023 – Risk 4: Unrestricted Resource Consumption...........................6

OWASP API 2023 – Risk 5: Broken Function Level Authorization...........................6

OWASP API 2023 – Risk 6: Unrestricted Access to Sensitive Business Flows....7

OWASP API 2023 – Risk 7: Server-Side Request Forgery (SSRF)............................8

OWASP API 2023 – Risk 8: Security Misconfiguration..8

OWASP API 2023 – Risk 9: Improper Inventory Management.................................8

OWASP API 2023 – Risk 10: Unsafe Consumption of APIs..9

Effective Protection Against the OWASP Top 10 Vulnerabilities...........................10

Understanding the Tools That Protect Your APIs..10

Tailored Protection for Each OWASP API Vulnerability..12

Summary..13

2 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

3 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

In today’s interconnected digital landscape,
application programming interfaces (APIs) play a
critical role in facilitating communication between
software applications. However, with this
convenience comes the responsibility of ensuring
API security to protect against malicious attacks.
Let’s delve into key aspects of API security using
insights from Open Web Application Security Project
(OWASP) API Security Top Ten for 2023. Let’s
explore the fundamental concepts of API security
and learn how Radware helps protect your APIs
against each of those vulnerabilities.

OWASP API 2023 – Risk 1 : Broken Object-level
Authorization
This risk occurs when APIs expose endpoints that manage object identifiers, creating
a wide attack surface of Object-level Access Control issues. Object-level authorization
checks should be considered for every object of a function or endpoint accessed by a
specific user.

Object-level authorization is an access control mechanism that is usually implemented
at the code level to validate that a user can only access the objects they should have
permission to access.

Example Scenario: Profile Access
Consider an application that allows users to view their own profile information via an
API call:

GET /api/profile/{user_id}

An attacker, instead of using their own user_id, substitutes it with the user_id of another
user:

GET /api/profile/other_user_id

If the API lacks proper authorization checks, the attacker gains unauthorized access to
another user’s profile information.

4 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

OWASP 2023 API – Risk 2: Broken Authentication
This risk occurs when authentication mechanisms are implemented incorrectly,
allowing attackers to compromise authentication tokens or exploit implementation flaws
to assume other users’ identities temporarily or permanently. Compromising a system’s
ability to identify the client/user compromises API security overall.

Example Scenario 1: Money Transfers
Imagine an online banking application that uses a token-based authentication system.
The API endpoint for transferring funds looks like this:
POST /api/transfer_funds
Authorization: bearer “valid_token_here”
{
 “recipient_account”: “12345678”,
 “amount”: 100.00,

 }

After an attacker discovers a valid token (e.g., by stealing it from a legitimate user’s
device or intercepting it during transmission), the attacker crafts a malicious request:
POST /api/transfer_funds
Authorization: bearer “valid_token_here”
{
 “recipient_account”: “attacker_account”,
 “amount”: 1000000.00,

 }

Due to improper authentication checks, the API processes the request, transferring a
large amount of money to the attacker’s account.

Example Scenario 2: Credential Stuffing
Credential stuffing involves attackers using lists of compromised username/password
pairs, often obtained from previous data breaches, to gain unauthorized access to
user accounts. Here’s a detailed example of how an API that’s vulnerable to broken
authentication might be exploited via credential stuffing:

An API for an online retail service allows users to log in to their accounts. The
authentication endpoint does not have sufficient protection against automated login
attempts.

Endpoint:
POST /api/login
Payload: {“username”: “user@example.com”, “password”: “password123”}

One can use a simple python script to automate login with a list of user names /
passwords:

5 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

import requests
url = “https://api.onlineretail.com/api/login”
List of compromised credentials
credentials = [
 {“username”: “victim1@example.com”, “password”: “password123”},
 {“username”: “victim2@example.com”, “password”: “123456”},
 # More credentials...

]

for cred in credentials:
 response = requests.post(url, json=cred)
 if response.status_code == 200 and “token” in response.json():
 print(f”Successful login: {cred[‘username’]}”)
 # Store or use the token for further actions
 else:
 print(f”Failed login: {cred[‘username’]}”)

OWASP API 2023 – Risk 3: Broken Object Property
Level Authorization
This category combines two vulnerabilities: Excessive Data Exposure and Mass
Assignment. The root cause lies in the lack of or improper authorization validation at
the object property level. APIs vulnerable to this risk expose object properties without
adequate authorization checks. Essentially, it’s about controlling access to specific
properties within an object.

Example Scenario: Information Changes
Consider an e-commerce application with an API endpoint that retrieves product
details:

GET /api/products/{product_id}

The API returns the entire product object, including sensitive properties like price,
cost, and supplier details. An attacker can directly call this API and change sensitive
information that should be restricted. For instance: PUT /api/products/123

The request includes:
{
 “product_id”: 123,
 “name”: “Super Secret Widget”,
 “price”: 0, 		 this could be a manipulation of the attacker, reducing the price
 “cost”: 100.00,
 “supplier”: “Confidential Corp”
 ...
}

Proper authorization checks at the property level would prevent unauthorized write/read
access to sensitive fields that should only be accessible by administrators.

6 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

OWASP API 2023 – Risk 4 : Unrestricted Resource
Consumption
This vulnerability occurs when APIs do not properly limit client interactions or resource
consumption. It is like managing a buffet where guests can take as much food as they
want. Here is a non-technical breakdown:

Resource Hunger: APIs are hungry for resources like bandwidth, CPU, memory,
and storage. For example, attackers can bombard APIs with requests, gobbling up
resources.

Denial of Service (DoS): Successful attacks can starve the system, causing a Denial
of Service. It is like a buffet that runs out of food because one person ate everything.

Example Scenario 1: Overwhelming Requests
A social network’s “forgot password” flow uses SMS verification. An attacker sends
thousands of API requests, causing the system to send tens of thousands of text
messages, resulting in significant financial losses.

Example Scenario 2: Large Image Upload
A GraphQL API allows users to upload profile pictures. Due to insufficient resource
limits, an attacker uploads a large image, exhausting available memory and rendering
the API unresponsive.

OWASP API 2023 – Risk 5: Broken Function Level
Authorization
Imagine a building with various rooms, each requiring different keys for access. If those
rules are unclear or misconfigured, intruders might gain access to restricted areas.
Similarly, in APIs, flawed authorization can allow attackers to access resources they
should not, potentially compromising sensitive data or functions. Exploitation of this risk
requires the attacker to send legitimate API calls to an endpoint they should not have
access to (e.g., as anonymous users or regular non-privileged users). These exposed
endpoints become easy targets for exploitation. Authorization checks for a function or
resource are typically managed via configuration or code level.

Example Scenario: Registration Duplication
Consider an application that allows only invited users to join. During the registration
process, the mobile app triggers an API call to retrieve details about an invite using
GET /api/invites/{invite_guid}. The response includes the user’s role and email.

An attacker duplicates the request, manipulates the HTTP method and sends a
malicious request to POST /api/invites/new. This endpoint should be accessible only by
administrators via the admin console. Unfortunately, the endpoint lacks proper function
level authorization checks. The attacker exploits this flaw by creating a new invite with
admin privileges:
POST /api/invites/new
{
 “email”: “attacker@somehost.com”,
 “role”: “admin”
}

7 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

OWASP API 2023 – Risk 6 : Unrestricted Access to
Sensitive Business Flows
This vulnerability occurs when APIs do not properly limit client interactions or resource
APIs vulnerable to this risk expose a business flow—such as buying a ticket or posting
a comment—without adequately considering how the functionality could impact the
business if abused in an automated manner.

Example Scenario 1: Manipulating Financial Transactions
An API might expose endpoints that handle financial transactions, such as transferring
money between accounts. If access controls are not properly implemented, an attacker
could:

À	Access endpoints meant for administrators or high-privilege users.

À	Change transaction details (e.g., amount, recipient) without proper authorization.

À	Trigger unauthorized transactions.

Example Attack:
Endpoint: POST /api/transfer

Payload: {“fromAccount”: “123”, “toAccount”: “456”, “amount”: “1000”}If the API
lacks proper access control checks, any authenticated user might be able to
execute this endpoint, transferring funds without authorization.

Example Scenario 2: Changing Account Permissions
APIs that manage user roles and permissions should be strictly controlled. An attacker
could exploit this vulnerability to escalate their privileges.

Example Attack:
Endpoint: POST /api/users/changeRole

Payload: {“userId”: “789”, “role”: “admin”}

Without proper access control, an attacker with basic user privileges could
change their role to an administrator.

8 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

OWASP API 2023 – Risk 7: Server-Side Request
Forgery (SSRF)
SSRF flaws occur when an API fetches a remote resource without validating the
user-supplied URI. Attackers can coerce the application to send crafted requests to
unexpected destinations, even bypassing firewalls or VPNs. It is like a sneaky trick
where an attacker manipulates an authorized application into fetching restricted
information on their behalf.

Example Scenario: Profile Picture Upload API
Imagine a social network that allows users to upload profile pictures. When a user
chooses to provide an image URL instead of uploading a file from their machine, the
following API call is triggered:

POST /api/profile/upload_picture

{
 “picture_url”: “http://example.com/profile_pic.jpg”
}

An attacker can exploit this by sending a malicious URL like “localhost:8080”. The API
endpoint will attempt to fetch the resource from that URL. Depending on the response
time, the attacker can determine whether the port is open or not within the internal
network.

OWASP API 2023 – Risk 8: Security Misconfiguration
This risk occurs when the security configuration settings of an API are not properly set
up. It’s like accidentally sharing your secret codes with everyone. Think of it as leaving
your house unlocked or your safe combination written on a sticky note. Attackers can
find unpatched flaws, unprotected files, or common endpoints, gaining unauthorized
access or knowledge of the system.

Example Scenario: Finding Hidden Endpoints
An attacker discovers an undocumented API endpoint used only by the DevOps team.
They send a request to this endpoint, accessing sensitive functions or data. Without
proper security configuration, the system unwittingly spills its secrets.

OWASP API – Risk 9: Improper Inventory
Management
This risk emphasizes the importance of maintaining accurate documentation and
tracking deployed API versions to mitigate vulnerabilities associated with exposed
endpoints and deprecated versions.

Example Scenario: Outdated endpoints
Consider an API that lacks proper inventory management. If deprecated endpoints
or outdated versions remain accessible, an attacker could exploit them to gain
unauthorized access or manipulate sensitive data.

http://example.com/profile_pic.jpg

9 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

OWASP API 2023 - 10: Unsafe Consumption of APIs
This risk highlights the tendency of developers to trust data received from third-party
APIs more than user input. As a result, they may adopt weaker security standards.
Instead of directly compromising the target API, attackers often go after integrated
third-party services to achieve their malicious goals.

Example Scenario: Gateway Vulnerabilities
Developers tend to trust data received from third-party APIs more than user input,
leading to weaker security practices. Attackers exploit integrated third-party services
to compromise APIs indirectly. Imagine an e-commerce application that integrates
with a payment gateway API. If the payment gateway API has vulnerabilities, attackers
might abuse it to manipulate transactions, steal funds or gain unauthorized access to
sensitive data.

10 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

Effective Protection Against the
OWASP Top 10 Vulnerabilities
Effective protection of APIs can’t be applied with a single tool, just like API attacks
are not executed through a single API call. Sophisticated API attacks often include
a scanning phase, a search for vulnerabilities, the learning of the API endpoints, and
many other techniques to prepare attacks that are often executed through innocent
looking API calls. To block even the most sophisticated type of attacks, one would
need a combination of API protection tools to detect the attack as soon as possible
(e.g. in the scanning phase, or better yet, blocking known bad actors), and then apply
accurate blocking with surgical precision, so that it won’t cause false positives and
break the application.

Understanding the Tools That Protect Your APIs
Token-Based Authentication: Ensures only authenticated and authorized users
interact with your APIs.

Radware’s token-based system safeguards sensitive data and prevents unauthorized
access and data tampering, effectively addressing various OWASP API Top 10
concerns.

Client source access list: Enables strict control over API access by allowing
administrators to specify authorized IP addresses and geographical locations,
effectively blocking malicious attempts from illegitimate sources.

Radware enforces these access restrictions to ensure that only requests originating
from trusted sources are allowed, thereby mitigating the risk of unauthorized access
and thwarting potential attacks outlined in the OWASP API Top 10. This granular
control mechanism enhances security posture by preventing unauthorized entities from
interacting with the API endpoints, strengthening the overall defense against threats
such as unauthorized access and potential data breaches.

Automatic API Discovery: A must-have in a reality where APIs are changing on daily
basis and often be undocumented or from third parties.

Radware stands out with its ability to automatically learn all API endpoints and their
structure and automatically produce a detailed and accurate schema file, which can
enable accurate API protection.

Our API Discovery goes on to provide regex for enforcement, a level of protection that
surpasses standard developer tools. It uncovers hidden vulnerabilities like zombie
APIs and outdated endpoints, empowering you to fortify your API infrastructure with
confidence. Boost security, build trust and streamline API interactions effortlessly with
our straightforward API Discovery solution.

API Schema Enforcement: Rigorously upholds the integrity of traffic structure and
format, safeguarding against malicious manipulations in both REST and GraphQL APIs.

By strictly enforcing predefined schemas, Radware ensures that all incoming API calls
adhere to expected formats, mitigating the risk of exploitation and defending against
potential threats outlined in the OWASP API Top 10. This proactive approach bolsters
the security posture of APIs.

11 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

Quota Enforcement Per API Endpoint: A pivotal feature designed to protect
against vulnerabilities and prevent excessive data consumption and manipulation.

By imposing a rate limit on each API Endpoint, Radware not only deters potential
attackers from exploiting vulnerabilities through repeated requests, but also shields
your system from malicious actors attempting to uncover data structures for more
potent attacks and potential data leakage. This proactive measure ensures that your
organization remains safeguarded against a wide range of threats, bolstering your
overall security posture and providing peace of mind for your team.

Brute Force Defense: An advanced safeguard against unauthorized access
attempts.

Radware implements robust measures to defend against malicious users attempting
to gain entry through repetitive login attempts. By enforcing stringent login protection,
this protection mechanism shields your platform from brute force attacks, ensuring
malicious actors won’t be able to guess credentials that grant access to your APIs and
applications.

Bad Bot Protection: Vital for safeguarding against Bots and capable of emulating
human behavior or legitimate actors.

Radware’s Bot Manager solution effectively distinguishes between legitimate users
and malicious bot activity through various techniques that eliminate many protection
avoidance tricks used by advanced bots.

Data Leakage Prevention (DLP): A crucial feature for safeguarding sensitive data
such as personal identifiable information (PII), credit cards and social security numbers
from leaking outside your applications through legitimate looking API calls.

By inspecting all server responses, and detecting PIIs within them, Radware masks the
sensitive data in the API call response, protecting it from leaking outside.

Business Logic Protection – Sequencing: A powerful protection tool that
can outsmart evolving threats that try to access and manipulate data by leveraging
vulnerabilities in the API flow (the business logic).

Radware’s API Protection solution continuously learns legitimate API call flows, and
thus it can detect and block in real-time non-legitimate call flaws before they exert any
harm to the application or its data integrity.

GraphQL Protection: A protection designed to mitigate risks associated with
excessive data manipulation, exposure and server resource consumption, while also
safeguarding against malicious actors collecting more information than necessary.

Radware’s API Protection solution enforces strong input validations with the option
to strengthen strict limits within the GraphQL language, preventing potential abuse
that could compromise data integrity and strain server resources. By imposing this
protection, we ensure that only necessary and authorized data requests are processed,
while ensuring optimal performance of GraphQL servers.

ActorID Security Enforcement: IP-based mitigation of bad actors is no longer
effective or enough, as API based attacks can often bypass this type of mitigation or
cause an unacceptable level of false positives.

Radware’s API Protection solution prioritizes security at the level of ActorID, aligning
seamlessly with the intricacies of your application’s business logic flows, ensuring
granular protection tailored to each unique ActorID (i.e., malicious user/actor).

12 White Paper | Understanding the OWASP API Top Ten for 2023 (and How to Protect Your APIs)

Client-Side Protection: Encompasses various measures to secure the user’s end
of interactions with applications. This includes safeguarding sensitive data stored
locally, such as in local storage, from unauthorized access or tampering. Additionally,
mitigation against threats like “man-in-the-browser” attacks ensures that malicious
entities cannot intercept or manipulate data exchanged between the client and server
or client and malicious server.

Furthermore, client-side login mechanisms, coupled with protection of personally
identifiable information (PII), help fortify authentication processes and shield sensitive
user data from unauthorized access.

Preventing token leakage ensures that authentication tokens or session identifiers are
not inadvertently exposed, reducing the risk of unauthorized access to user accounts
or sensitive resources. These collective efforts in client-side protection bolster overall
security posture, instilling confidence in users and safeguarding against a myriad of
potential threats.

Tailored Protection for Each OWASP API Vulnerability
The following table specifies which combination of protection tools are needed for each
OWASP API vulnerability.

OWASP
API 1

OWASP
API 2

OWASP
API 3

OWASP
API 4

OWASP
API 5

OWASP
API 6

OWASP
API 7

OWASP
API 8

OWASP
API 9

OWASP
API 10

Token Control
Authorization ✔ ✔ ✔ ✔ ✔ ✔

Client Source
Access List ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Automatic API
Discovery ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

API Schema
Enforcement ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Quota
Enforcement Per
API Endpoint

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Credential
Cracking (Brute
Force Protection -
Part of ATO)

✔ ✔ ✔ ✔ ✔

Bad Bot
Protection ✔ ✔ ✔ ✔

Data Leakage
Prevention (DLP) ✔ ✔ ✔ ✔ ✔

Business Logic
Protection –
Sequencing

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GraphQL
Protection ✔ ✔ ✔ ✔

ActorID Security
Enforcement ✔ ✔ ✔ ✔ ✔ ✔ ✔

Client-Side
Protection ✔ ✔

Signature-based
Attack Protection ✔ ✔ ✔ ✔

Summary
APIs represent the broadest attack surface in enterprise applications, using diverse
attack vectors ranging from SQL injection to complex manipulations of legitimate
API calls to bypass business logic. OWASP’s 2023 guidelines highlight common API
vulnerabilities, such as broken object-level authorization and excessive data exposure,
necessitating a comprehensive protection approach.

Effective API security requires a combination of tools to detect attacks, enforce
accurate security policies, and block malicious actors while ensuring legitimate users
are not affected. A good API protection solution should include automatic discovery
API endpoints and their structure, auto-learning of the application’s business logic, real-
time attack detection (based on the above), and mitigation with minimal false positives.

Radware’s API Protection solution leverages AI-based algorithms to continuously
learn and adapt to API structures and behaviors, translating this knowledge into
precise security policies that protect against evolving threats while maintaining service
continuity for legitimate users.

RWI 279 | 06.25.24

This document is provided for information purposes only. This document is not warranted to be error-free, nor subject to any other warranties or conditions,
whether expressed orally or implied in law. Radware specifically disclaims any liability with respect to this document and no contractual obligations are formed
either directly or indirectly by this document. The technologies, functionalities, services, or processes described herein are subject to change without notice.

© 2024 Radware Ltd. All rights reserved. The Radware products and solutions mentioned in this document are protected by trademarks, patents
and pending patent applications of Radware in the U.S. and other countries. For more details, please see: https://www.radware.com/LegalNotice/.
All other trademarks and names are property of their respective owners.

https://www.radware.com/LegalNotice/

